- Конспект урока по Алгебре "Понятие арккосинуса. Уравнение вида сosх = а" 10 класс

Конспект урока по Алгебре "Понятие арккосинуса. Уравнение вида сosх = а" 10 класс

Разработчик материала:

Матвеева Мария Викторовна

учитель математики

ГБОУ ШИ «Олимпийский резерв»

Программированный урок для 10 класса по теме:

Понятие арккосинуса. Уравнение вида сosх = а.

Как и при решении обычных уравнений, решение тригонометрических уравнений сводится к умению решать простейшие уравнения.

Определение: Уравнение называется тригонометрическим, если неизвестное стоит под знаком тригонометрических функций.

Простейшими тригонометрическими уравнениями являются: сosх = а, sinх = а, tgх = а.

Каждое из них имеет свою формулу для решения. Единственное, что нужно четко запомнить - это, то, что при их решении получается бесконечно много корней.

Но можно и узнать конкретные решения.

Выпиши в теоретическую тетрадь: определение и примеры.

Для того чтобы научится решать первое простейшее тригонометрическое уравнение, нужно познакомиться с таким понятием, как арккосинус числа.

Следует отметить, что число, для которого рассматривается арккосинус, принадлежит промежутку [-1; 1].

Определение: Арккосинусом числа а[-1; 1] (обозначается arccos a) называется такое число α[0; π], косинус которого равен а. То есть cos (arccos a) = а.

Например, arccos (-1) = π; так как cos π= -1

arccos = , так как cos =

Таким образом, арккосинус есть обратная функция к косинусу.

Выпиши в теоретическую тетрадь: определение и примеры.

На самом деле, найти значение arccos можно легко воспользовавшись до боли нам знакомой таблицей значений тригонометрических функций.

При нахождении arccos необходимо задавать себе такой вопрос, при каком значении cos равен ? И смотреть в таблицу. Ответ: «при 45° или в радианной мере ».

Следует запомнить, что значение арккосинуса принято записывать только в радианной мере. Поэтому следует запомнить соответствие градусной и радианной меры углов.

Если число, от которого необходимо найти арккосинус отрицательное, то чтобы его найти необходимо, воспользоваться формулой:

arccos (-а) = π - arccos а.

Например, arccos (= π = .

arccos (= π = .

Выпиши в теоретическую тетрадь: формулу и примеры.

Реши задания по учебнику с. 168 № 568 – 570.


Решение тригонометрического уравнения вида cos х = а сводится к использованию формулы:

х = ±

Эту формулу можно проиллюстрировать на рисунке 68 стр. 165 по учебнику. Откройте учебник.

На чертеже видно, что на оси косинусов отмечена точка . Прямая проведенная вертикально через эту точку, показывает, что косинус для значений I и VI четвертей совпадает.

Но как мы можем получить эти углы, когда будем поворачивать точку? Да именно в I четверти на «+» угол, а в VI четверти на «-». Отсюда и получается знак «±». То есть соs и cos совпадают.

Выпиши в теоретическую тетрадь: формулу и рисунок из учебника с пояснениями.

Разберем решение тригонометрического уравнения на примере:

соs х =

х = ± (посмотреть значение по таблице)

х = ±

Ответ: х = ±

Выпиши в теоретическую тетрадь: решение уравнения с пояснениями.

Так как корней получается бесконечное количество, то в заданиях иногда просят найти конкретные значения корней, например принадлежащие промежутку [0; ], то есть I четверти или промежутку [0; 90°].

Эти задания очень часто встречаются в ЕГЭ. Их можно найти путем подстановки вместо n конкретных чисел (для помощи тебе выделено цветом ).

Например, рассмотрим решение нашего уравнения х = ±

1.Пусть n =0. Тогда х = ± ± , то есть х1 = + и х2 = .

Из этого видно, что получается 45° и - 45°. Из этих двух чисел, только одно принадлежит промежутку [0; 90°], то есть I четверти. Только число + .

2.Пусть n =1. Тогда х = ± ± ,

то есть х1 = + и х2 = ,

х1 = = и х2 = =

Из этого видно, что получается х1 = 405° и х2 = 315°. Значит, ни одно из чисел не принадлежит I четверти, то есть промежутку [0; 90°]. Поэтому в ответ их записать нельзя.

Выпиши в теоретическую тетрадь: способ нахождения конкретных корней (принадлежащих конкретному промежутку) тригонометрического уравнения.

Например 1 , решите уравнение соs х = и найдите корни, принадлежащие промежутку [].

Первое, что необходимо сделать это просто решить уравнение по формуле и на время забыть про промежуток.

соs х =

х = ± (посмотреть значение по таблице)

х = ±

Второе, нужно определиться с четвертью, которой должны принадлежать корни.

это промежуток от 90° до 180°. Значит, это II вторая четверть.

Третье, нужно подставить конкретные значения n (для помощи тебе выделено цветом ).

  1. Пусть n=0.

Тогда, х = ± = ± , то есть х1= и х2 = . Если перевести в градусную меру, то х1 принадлежит I четверти, а х2 - IV четверти. А наша четверть II. Поэтому нужно подставить другое значение n.

2.Пусть n=1.

Тогда, х = ± = ± , то есть

х1 = + и х2 = ,

х1 = = и х2 = =

х1 = 420° и х2 = 300°

Ответ: х = ±


Например 2, решите уравнение соs х = .

соs х =

х = ± (посмотреть значение по таблице, но в таблице нет таких значений, поэтому вычислить значение не предоставляется возможным).

Ответ: х = ±

Выпиши в теоретическую тетрадь: пример 2 с пояснениями.

В случае если косинус равен отрицательному числу, необходимо использовать другую формулу при решении уравнения:

х = ±

Выпиши в теоретическую тетрадь: формулу корней тригонометрического уравнения, если число отрицательное.

Разберем решение тригонометрического уравнения на примере:

соs х =

х = ± (посмотреть значение по таблице)

х = ±

х = ±

х = ±

Ответ: х = ±

Выпиши в теоретическую тетрадь: решение уравнения с пояснениями.

Найти корнем уравнения, которые принадлежат конкретному промежутку можно таким же способом, как и в первом случае.

Реши задания по учебнику: с. 169 №571, 572.

Не всегда уравнения бывают такими простыми, есть уравнения разной степени сложности.

Например, 3. Решите уравнение 2соs 3х = .

соs 3х = (необходимо разделить обе части уравнения на число, которое стоит перед косинусом)

3х = ± (посмотреть значение по таблице)

3х = ± (сейчас необходимо разделить обе части на число, стоящее перед х)

3х:3 = ± (знак деления можно записать в виде дробной черты)

= ± (можно сократить и перемножить)

х = ±

Ответ: х = ±

Например, 4. Решите уравнение соs х = ,5

соs х = ,5

Решить такое уравнение не представляется возможным, так как значение косинуса находится в промежутке [-1; 1].

Ответ: нет решений.

Выпиши в теоретическую тетрадь: примеры с пояснениями.

Реши задания по учебнику: с. 169 №573.


Здесь представлен документ «Конспект урока по Алгебре "Понятие арккосинуса. Уравнение вида сosх = а" 10 класс», который Вы можете бесплатно скачать на нашем сайте. Предмет: Алгебра (10 класс). Также здесь Вы можете найти дополнительные учебные материалы и презентации по данной теме, используя которые, Вы сможете еще больше заинтересовать аудиторию и преподнести еще больше полезной информации.

Список похожих документов

Конспект обобщающего урока по алгебре "Формулы сокращённого умножения" 7 класс

Конспект обобщающего урока по алгебре "Формулы сокращённого умножения" 7 класс

Конспект. обобщающего урока по алгебре. . с использованием информационных технологий (ИТ). Тема:. « Формулы сокращённого умножения». Продолжительность: ...
Конспект интегрированного урока по алгебре по теме "Приближенные вычисления" 8 класс

Конспект интегрированного урока по алгебре по теме "Приближенные вычисления" 8 класс

Голицинский филиал МБОУ «Никифоровская СОШ№2». Никифоровского района Тамбовской области. Конспект интегрированного урока по алгебре ...
Конспект урока в 10 классе по алгебре "Соотношения между тригонометрическими функциями одного и того же аргумента"

Конспект урока в 10 классе по алгебре "Соотношения между тригонометрическими функциями одного и того же аргумента"

. Урок по алгебре в 10-м классе "Соотношения между тригонометрическими функциями одного и того же аргумента". . Бойко Ксения Николаевна. МАОУ ...
Конспект открытого урока по алгебре на тему «Алгебраические выражения. Подготовка к экзаменам» 9 класс

Конспект открытого урока по алгебре на тему «Алгебраические выражения. Подготовка к экзаменам» 9 класс

Государственное бюджетное специальное (коррекционное) образовательное учреждение для обучающихся, воспитанников с ограниченными возможностями здоровья ...
Конспект урока в 7 классе по алгебре по теме: «Решение задач составлением системы уравнений»

Конспект урока в 7 классе по алгебре по теме: «Решение задач составлением системы уравнений»

Муниципальное общеобразовательное учреждение общеобразовательная школа №53. пос. Октябрьский Люберецкий район Московская область. . . ...
Конспект урока в 9 классе по алгебре "НАХОЖДЕНИЕ СВОЙСТВ ФУНКЦИИ ПО ЕЕ ГРАФИКУ"

Конспект урока в 9 классе по алгебре "НАХОЖДЕНИЕ СВОЙСТВ ФУНКЦИИ ПО ЕЕ ГРАФИКУ"

Алгебра 9 класс. Тема урока: Нахождение свойств функции по ее графику. Цели:. познакомить учащихся с основными свойствами функций; формировать ...
Конспект урока в 9-м классе по алгебре по теме: «СИСТЕМЫ УРАВНЕНИЙ»

Конспект урока в 9-м классе по алгебре по теме: «СИСТЕМЫ УРАВНЕНИЙ»

Конспект урока в 9-м классе. . по алгебре. . по теме:. . «СИСТЕМЫ УРАВНЕНИЙ ». Учитель. высшей категории. Петухова И.В. ...
Конспект и презентация урока по алгебре в 11 классе "Введение понятия первообразной"

Конспект и презентация урока по алгебре в 11 классе "Введение понятия первообразной"

. Муниципальное общеобразовательное учреждение. «Средняя общеобразовательная школа №7. г. Соль-Илецка Оренбургской области». ...
Конспект урока алгебры для 8 класса "Рациональные выражения"

Конспект урока алгебры для 8 класса "Рациональные выражения"

3. . 8 класс алгебра. . . Урок №1. . Тема: Рациональные выражения. Цели: повторить необходимый материал из курса алгебры 7 класса; ввести ...
Конспект урока на тему «Решение уравнений вида х+2=29 на основе свойства верных равенств»

Конспект урока на тему «Решение уравнений вида х+2=29 на основе свойства верных равенств»

Математика. . Тема урока: «. Решение уравнений вида. х. +2. =. 29 на основе свойства верных равенств». Цель обучения:. Создать условия для формирования ...
Конспект урока алгебры в 7 классе по теме "Умножение одночлена на многочлен"

Конспект урока алгебры в 7 классе по теме "Умножение одночлена на многочлен"

12. . Конспект урока алгебры в 7 классе по теме. . "Умножение одночлена на многочлен". Автор: Макарова Татьяна Павловна, учитель математики ...
Конспект урока для 8 класса "Решение уравнений"

Конспект урока для 8 класса "Решение уравнений"

Гончарова Мария Федоровна. Учитель математики. МБОУ СОШ № 92 г.о. Самара. . Решение уравнений. Алгебра 8 класс. Программно-методическое ...
Конспект урока для 8 класса "Функция"

Конспект урока для 8 класса "Функция"

ПЛАН-КОНСПЕКТ УРОКА Функция . . ФИО. . . Кнаус Татьяна Владимировна. . . . . Место работы. . МБОУ «Гимназия 38». . . ...
Конспект урока для 8 класса "Решение квадратных неравенств"

Конспект урока для 8 класса "Решение квадратных неравенств"

Тема урока:. « Решение квадратных неравенств». Тип урока: урок комплексного применения знаний и способов действий по теме «Квадратные неравенства». ...
Конспект урока для 8 класса "Решение квадратных уравнений"

Конспект урока для 8 класса "Решение квадратных уравнений"

. . . Тема:. . Решение квадратных уравнений. . Класс: 8. . Дата:_. _. Тип урока:. . Урок-обобщение. . . . Цель ...
Конспект урока для 8 класса "Обобщающий урок. Преобразование выражений, содержащих квадратные корни"

Конспект урока для 8 класса "Обобщающий урок. Преобразование выражений, содержащих квадратные корни"

Урок алгебры в 8 классе. Тема. : Обобщающий урок. Преобразование выражений, содержащих квадратные корни. Учитель математики. : Байтурова А.Р. ...
Конспект урока для 8 класса "Решение задач с помощью дробных рациональных уравнений"

Конспект урока для 8 класса "Решение задач с помощью дробных рациональных уравнений"

Характеристики урока (занятие). Уровень образования:. основное общее образование. . Целевая аудитория. : Учащиеся, учителя. Класс:. 8 класс. ...
Конспект урока для 8 класса "Иррациональные уравнения"

Конспект урока для 8 класса "Иррациональные уравнения"

Урок алгебры в 8 классе. Учитель: Габдукаева Физалия Каримовна. Тема урока: «Иррациональные уравнения». Цели:. Формирование навыков решения ...
Конспект урока для 8 класса "Квадратные уравнения"

Конспект урока для 8 класса "Квадратные уравнения"

8 класс. Тема урока:. Квадратные уравнения. Тип урока: Объяснение нового материала. Цель урока: Ввести формулы для решения квадратных уравнений ...
Конспект урока для 7 класса по теме «Формула разности квадратов»

Конспект урока для 7 класса по теме «Формула разности квадратов»

Государственное бюджетное общеобразовательное учреждение средняя общеобразовательная школа № 252 Красносельского района. . Санкт-Петербурга. ...