- Конспект урока по Алгебре "Тригонометрические уравнения" 11 класс

Конспект урока по Алгебре "Тригонометрические уравнения" 11 класс

Конспект урока алгебры и начала анализа в 11 классе

по теме: «Тригонометрические уравнения (урок обобщения и систематизации знаний)»

учителя математики МОУ СОШ № 2 г. Питкяранта РК

Никитиной С.В.


Тип урока: Урок обобщения и систематизации.

Методы:

- частично-поисковый;

- поисковый;

- проблемный;

-исследовательский – решение познавательных обобщающих задач;

- системные обобщения;

- самопроверка;

- самооценка.

Использованные технологии: технология сотрудничества – работа в малых группах, когда успех всех зависит от успеха каждого; информационная технология – использование возможностей компьютера.


Цель урока: Обобщить и систематизировать знания по теме «Тригонометрические уравнения», продолжить работу по подготовке к ЕГЭ.

Ход урока:

1°. Орг. момент

2°. Разминка

3°. Повторение.

4°. Решение простейших тригонометрических выражений. Индивидуальные задания.

5°. Работа в группах.

6°. Индивидуально-дифференцированная работа.

7°. Итог урока.

8. Задание на дом.

Формы организации труда:

- индивидуальная;

- фронтальная;

- групповая;

- индивидуально-дифференцированная.

1°. Орг. момент.

Сегодня на уроке мы обобщаем и систематизируем полученные знания по теме «Тригонометрические уравнения», напоминая основные и специальные методы их решения, повторяя формулы и приёмы и тем самым – продолжаем подготовку к ЕГЭ

Девизом урока предлагаю слова Сухомлинского, зашифрованные в ребусе. Для этого надо решить устные упражнения и по ответам находить слова этого крылатого выражения:


1) sin (π+ x)

2) arccos (-x)

3) sin x = 0

4) 2 cos x = 1

5) 5sin2x-7+5cos2x

6) arctg 1

7) cos x = a

8) ctg x = a

9) x2 + 5x +6 =0

10)sin π/4 +cos π/2

11) sin (-x)

12)arcsin(-/2)

13)y = cos(x-π)

14)arcctg(-1)

15) arccos (- 1/2)

16) sin (3π/2 – x)

17) ctg(- x)

18)arcsin(-1)+arccos1

19) sin x = a

20) tg x = a.

21) tg π/4

22) 72

23) sin2x+ tgxctg x +cos2x

24)



X =

У Ч И Т Е Л Ь

Б У Д У Щ Е М

-2 и 3

В Ы

sin x

С Е Г О Д Н Я

У Ч И Т Е Л Я,


В

X = arcctg a + πn, n ЄZ

И

X= arctg a + πn,nЄZ

В

π– arccos x

М Ы

2

П Р О Г Р Е С С А

-

Н О

X= (- 1)narcsin a +πn, n Є Z

И Н А Ч Е

X=πn, nЄZ

У Ч И М С Я

У Ч Е Н И К

X=

В М Е С Т Е

2

Б У Д Е Т

М О И

49

НЕ

cos x

Д О Л Ж Е Н

2

Я

2

Н А У К Е

sin x

У Ч Е Н И К И.

ctg x

П Р Е В З О Й Т И

ВАШ

На плакате появляется эпиграф урока: “Сегодня – мы учимся вместе: я, ваш учитель и вы мои ученики. Но в будущем ученик должен превзойти учителя, иначе в науке не будет прогресса ”. (Сухомлинский)

На доске записаны уравнения. Исходя, из записей на доске определите тему нашего урока.

« Решение тригонометрических уравнений»

Верно, подготовка к ЕГЭ.

Давайте подумаем, что мы должны хорошо знать, для того, чтобы решить тригонометрическое уравнение.

Выслушиваются ответы учащихся (формулы по тригонометрии, решение простейших тригонометрических уравнений, способы решения уравнений и т.д.)

Слабым учащимся дается задание заполнить таблицу в парах

Задание: заполнить 3 столбец таблицы

Значения

а

Уравнение

Формулы решения уравнений

sinx=a

sinx=a

уравнение решений не имеет

а=0

sinx=0

а=1

sinx= 1

а= -1

sinx= -1

cosx=a

cosx=a

уравнение решений не имеет

а=0

cosx=0

а=1

cosx= 1

а= -1

cosx= -1

tgx=a

ctgx=a



Для остальных:

2°. Разминка. Диктант «Верно - неверно» (самопроверка)













3.Три слабых ученика к доске - решить простейшие уравнения (тем, кто записывал формулы)

А1

А3

А 4

Проверяют сильные ученики

4.Классу задания: на доске записаны уравнения, разделите их на группы по способам решения

3 sin²x + cos²x = 1 - sinx cosx

4 соs²x - cosx – 1 = 0

2 sin² x/2 + cosx = 1

cosx + cos3x = 0

2 sinx cos5x – cos5x = 0

2sinxcosx – sinx = 0

3 cos²x - cos2x = 1

6 sin²x + 4 sinx cosx = 1

4 sin²x + 11sinx = 3

sin3x = sin17x

А для этого надо вспомнить методы решения тригонометрических уравнений, которые мы знаем

Обсудите в парах, какие способы вам известны.

Учащиеся вспоминают и называют способы. Затем показывается слайд с методами решения.

После этого учащимся дается задание по вариантам (для проверки поменялись тетрадями вариант со своим вариантом)

Вариант I



Предложите способ решения данного тригонометрического уравнения:

1)приведение к квадратному;

2)приведение к однородному;

3)разложение на множители;

4)понижение степени;

5)преобразование суммы тригонометрических функций в произведение.

Уравнение

Способы решения


1

2

3

4

5

а)3 sin²x + cos²x = 1 - sinx cosx






б)4 соs²x - cosx – 1 = 0






в)2 sin² x/2 + cosx = 1






г) cosx + cos3x = 0






д)2 sinx cos5x – cos5x = 0








Вариант II

Предложите способ решения данного тригонометрического уравнения:

1)приведение к квадратному;

2)приведение к однородному;

3)разложение на множители;

4)понижение степени;

5)преобразование суммы тригонометрических функций в произведение.



Уравнение

Способы решения


1

2

3

4

5

а)2sinxcosx – sinx = 0






б)3 cos²x - cos2x = 1






в)6 sin²x + 4 sinx cosx = 1






г)4 sin²x + 11sinx = 3






д) sin3x = sin17x









5.Физминутка

Задание для снятия утомляемости глаз: нельзя водить руками, а лишь только глазами В таблице расположены числа от 1 до 20, но четыре числа пропущены. Ваша задача: назвать эти числа.

5

13

18

3

19

1

8

16

12

14

20

10

4

9

15

6




6.Дома было дано задание, придумать как можно больше способов решения уравнения

К доске выходят три ученика и записывают по 2 различных способа (объясняют)

7.Учащимся предлагается выполнить задание С1:

а) Решите уравнение .

б) Найдите все корни этого уравнения, принадлежащие промежутку .

Решение.

а) (один ученик у доски):
Так как(формула косинуса двойного угла), (формула приведения), то , , (вынесение за скобки общего множителя).

Корни уравнения:
, .

б) Работа по группам:

1 группа. Отбор корней по единичной окружности.

Корни уравнения изображаются точками А и В, а корни уравнения - точками C и D, промежуток изображен жирной дугой (см. рис.). В указанном промежутке содержатся три корня уравнения: и .



б)Ответ: .

2 группа. Отбор корней по графику.

б) Корни, принадлежащие промежутку, отберем по графику. Прямая (ось ) пересекает график в единственной точке, абсцисса которой принадлежит промежутку.

Прямая пересекает график ровно в двух точках, абсциссы которых принадлежат(см. рис.). Так как период функции равен , то эти абсциссы равны, соответственно, и .



В промежуткесодержатся три корня: .

3 группа. Отбор корней перебором значений.

б) Пусть . Подставляя , получаем . Промежутку принадлежит только .

Пусть . Подставляя , получаем:

.

Промежутку принадлежат только .

Промежутку принадлежат корни: .


4 группа. Отбор корней аналитически с помощью неравенств.

б) Отберем корни, принадлежащие промежутку.

Пусть .. Тогда .

Корень, принадлежащий промежутку: .

ПустьZ.

Тогда.

Корень, принадлежащий промежутку: .

ПустьZ.

Тогда.

Корень, принадлежащий промежутку: .

Промежутку принадлежат корни: .


8. Работа в группах.

Каждой группе предложено несколько уравнений. Необходимо, если возможно, определить вид уравнений и метод, который будет использоваться в решении этих уравнений. Решить уравнения и одно - два из них (по выбору группы) записать на доске и прокомментировать решение.



1 группа Уравнения, решаемые алгебраическими методами (методом разложения на множители, методом введения новой переменной). Выбрать корни принадлежащие промежутку [п/2; 2п] в 1 и 2 уравнениях

2 группа Однородные уравнения и сводимые к ним. Выбрать корни принадлежащие промежутку [п/2; 2п] в 1 и 2 уравнениях





3 группа Неоднородные уравнения. Выбрать корни принадлежащие промежутку [ п/2; 2п] в 1 и 2 уравнениях


4 группа Уравнения, решаемые при помощи преобразований, на основе формул преобразования сумм в произведение, произведения в сумму, понижения степени. Выбрать корни принадлежащие промежутку [п/2; 2п] в 1 и 2 уравнениях









9. Решение уравнений

Индивидуально-дифференцированная работа. Дети выбирают сами. Сколько успеют, остальное по выбору решают дома.

На “3”. Решите уравнения: 1) sinx =

2) cos2x – 9 cos x + 8 = 0

3)

На “4”. Решите уравнение:

1) cos 2x – 9cos x +8=0

2) sin 2x sin 3x=0

3) cos x + sin x = 0

4) (cos x – 1)

На “ 5”. Решите уравнение:

1) 2cos2x + 3sin x = 0

2) 3 sin x cos x – cos2 x = 0

3) Найдите среднее арифметическое корней уравнения

cos2 x + sin x cos x = 1 на промежутке [-π;π]

4)

5) 3 – 4 sin2 (3x+

6) | cos | = 2cos x –sin x.

10.Итог урока.

По окончании урока каждый ученик сам себя оценивает, отмечает это в листе учета. Подводятся итоги урока, анализируется работа каждого ученика.













Ф.И учащегося____________________________________________________________

Название этапа

Количество верных шагов

Оценка

Оценка

1

  • Девиз




2

  • Разминка (верно – неверно)

 

 

 

3

  • Повторение. (Выбор способа решения уравнения)

 

 

 

4

 

  • Индивидуальное задание

 

 

 

5

  • Работа в группах.

 

 

 

6

 

  • Индивидуально-дифференцированная работа.

 

 

 

8. Домашняя работа индивидуально-дифференцированная, причем каждому ученику есть возможность “ продвинуться”, те кто решал на “3” дома будет решать на “4”, кто на “4”,тот на “5”,а кто на “5”, тот на “5/5”.

Предлагаю закончить урок словами Я.А.Коменского: “ Считай несчастным тот день или тот час, в который ты не усвоил ничего нового и ничего не прибавил к своему образованию ”.









































Здесь представлен документ «Конспект урока по Алгебре "Тригонометрические уравнения" 11 класс», который Вы можете бесплатно скачать на нашем сайте. Предмет: Алгебра (11 класс). Также здесь Вы можете найти дополнительные учебные материалы и презентации по данной теме, используя которые, Вы сможете еще больше заинтересовать аудиторию и преподнести еще больше полезной информации.

Список похожих документов

Конспект урока для 10 класса «Тригонометрические уравнения»

Конспект урока для 10 класса «Тригонометрические уравнения»

Урок соревнование. Тема. «Тригонометрические уравнения». Девиз урока. :. «. Один за всех и все за одного». Ход урока:. Урок –соревнование будет ...
Конспект урока для 11 класса «Иррациональные уравнения»

Конспект урока для 11 класса «Иррациональные уравнения»

Муниципальное казенное общеобразовательное учреждение. Великоархангельская средняя общеобразовательная школа. Конспект урока для 11 класса. ...
Конспект интегрированного урока по алгебре по теме "Приближенные вычисления" 8 класс

Конспект интегрированного урока по алгебре по теме "Приближенные вычисления" 8 класс

Голицинский филиал МБОУ «Никифоровская СОШ№2». Никифоровского района Тамбовской области. Конспект интегрированного урока по алгебре ...
Конспект урока для 10 класса «Тригонометрические формулы»

Конспект урока для 10 класса «Тригонометрические формулы»

Ельцова Н.Г., учитель МОУ «Гимназия № 11». Урок по теме: «Тригонометрические формулы ». . . Класс:. 10 гуманитарный. Цель:. 1.Ввести понятие ...
Конспект обобщающего урока по алгебре "Формулы сокращённого умножения" 7 класс

Конспект обобщающего урока по алгебре "Формулы сокращённого умножения" 7 класс

Конспект. обобщающего урока по алгебре. . с использованием информационных технологий (ИТ). Тема:. « Формулы сокращённого умножения». Продолжительность: ...
Конспект и презентация урока по алгебре в 11 классе "Введение понятия первообразной"

Конспект и презентация урока по алгебре в 11 классе "Введение понятия первообразной"

. Муниципальное общеобразовательное учреждение. «Средняя общеобразовательная школа №7. г. Соль-Илецка Оренбургской области». ...
Конспект урока для 9 класса «Уравнения, приводимые к квадратным»

Конспект урока для 9 класса «Уравнения, приводимые к квадратным»

Открытый урок на тему. . «Уравнения, приводимые к квадратным» (9 класс). Цель: рассмотреть способы решения уравнений, приводимых к квадратным, ...
Конспект урока «Квадратные уравнения» 8 класс

Конспект урока «Квадратные уравнения» 8 класс

Муниципальное бюджетное общеобразовательное учреждение. средняя общеобразовательная школа №1 имени Н.Л. Мещерякова. г. Зарайск. Конспект урока. ...
Конспект открытого урока по алгебре на тему «Алгебраические выражения. Подготовка к экзаменам» 9 класс

Конспект открытого урока по алгебре на тему «Алгебраические выражения. Подготовка к экзаменам» 9 класс

Государственное бюджетное специальное (коррекционное) образовательное учреждение для обучающихся, воспитанников с ограниченными возможностями здоровья ...
Конспект урока в 10 классе по алгебре "Соотношения между тригонометрическими функциями одного и того же аргумента"

Конспект урока в 10 классе по алгебре "Соотношения между тригонометрическими функциями одного и того же аргумента"

. Урок по алгебре в 10-м классе "Соотношения между тригонометрическими функциями одного и того же аргумента". . Бойко Ксения Николаевна. МАОУ ...
Конспект урока в 7 классе по алгебре по теме: «Решение задач составлением системы уравнений»

Конспект урока в 7 классе по алгебре по теме: «Решение задач составлением системы уравнений»

Муниципальное общеобразовательное учреждение общеобразовательная школа №53. пос. Октябрьский Люберецкий район Московская область. . . ...
Конспект урока в 9-м классе по алгебре по теме: «СИСТЕМЫ УРАВНЕНИЙ»

Конспект урока в 9-м классе по алгебре по теме: «СИСТЕМЫ УРАВНЕНИЙ»

Конспект урока в 9-м классе. . по алгебре. . по теме:. . «СИСТЕМЫ УРАВНЕНИЙ ». Учитель. высшей категории. Петухова И.В. ...
Конспект урока в 9 классе по алгебре "НАХОЖДЕНИЕ СВОЙСТВ ФУНКЦИИ ПО ЕЕ ГРАФИКУ"

Конспект урока в 9 классе по алгебре "НАХОЖДЕНИЕ СВОЙСТВ ФУНКЦИИ ПО ЕЕ ГРАФИКУ"

Алгебра 9 класс. Тема урока: Нахождение свойств функции по ее графику. Цели:. познакомить учащихся с основными свойствами функций; формировать ...
Конспект урока для 11 класса на тему «Арифметический способ отбора корней в тригонометрических уравнениях»

Конспект урока для 11 класса на тему «Арифметический способ отбора корней в тригонометрических уравнениях»

Конспект урока для 11 класса на тему «Арифметический способ отбора корней в тригонометрических уравнениях». Цели и задачи урока:. . . повторение ...
Конспект урока для 8 класса "Квадратные уравнения"

Конспект урока для 8 класса "Квадратные уравнения"

8 класс. Тема урока:. Квадратные уравнения. Тип урока: Объяснение нового материала. Цель урока: Ввести формулы для решения квадратных уравнений ...
Конспект урока "Квадратные уравнения" 8 класс

Конспект урока "Квадратные уравнения" 8 класс

Тема урока: Квадратные уравнения. Тип урока. : Урок обобщения и систематизации знаний. Оборудование к уроку. : 1) Доска, мел. 2) Учебник. Алгебра ...
Конспект урока для 6 класса "Задачи на составление уравнения"

Конспект урока для 6 класса "Задачи на составление уравнения"

Задачи на составление уравнения (6 класс).  . В книге напечатаны рассказ и повесть, которые вместе занимают 70 страниц. Повесть занимает в 4 ...
Конспект урока для 5 класса по теме "Уравнения и решения задач с помощью уравнения"

Конспект урока для 5 класса по теме "Уравнения и решения задач с помощью уравнения"

Тема: «Уравнения и решение задач с помощью уравнений». 5 класс. Цель:. . закрепить умения и навыки решения уравнений и задач с помощью уравнений. ...
Конспект урока для 8 класса "Иррациональные уравнения"

Конспект урока для 8 класса "Иррациональные уравнения"

Урок алгебры в 8 классе. Учитель: Габдукаева Физалия Каримовна. Тема урока: «Иррациональные уравнения». Цели:. Формирование навыков решения ...
Конспект урока алгебры в 8 классе по теме "Квадратные уравнения"

Конспект урока алгебры в 8 классе по теме "Квадратные уравнения"

Шамарина Вера Валентиновна,. МБОУ «Цнинская СОШ № 1» п. Строитель Тамбовского района Тамбовской области,. учитель математики. ...

Информация о документе

Ваша оценка: Оцените документ по шкале от 1 до 5 баллов
Дата добавления:31 марта 2016
Категория:Алгебра
Классы:
Тип документа: Конспекты уроков
Поделись с друзьями:
Скачать напрямую