- Конспект урока по Алгебре "Определение первообразной"

Конспект урока по Алгебре "Определение первообразной"

Урок 5.

Определение первообразной.

Цели урока: знать правила дифференцирования, определение первообразной. Уметь определить является ли функция F первообразной для функции f на указанном промежутке.

Ход урока.

1. Организационный момент.

2. Устная работа.

1. Найдите производную функции

а) б)

в) г)

2. Найдите такую функцию, чтобы ее производной была данная функция:

а) б) в)


3. Объяснение нового материала.

Вспомнить механический смысл производной. С точки зрения механики скорость прямолинейного движения определяется как производная пути по времени. Если некоторая точка прошла путь S(t), то ее мгновенная скорость . Если теперь рассмотреть обратную задачу – нахождение пути, пройденного точкой с заданной скоростью, то придем к функции S(t), которую называют первообразной функции v(t), т.е. такой функцией, что . Так как производная постоянной равна нулю, то первообразная определяется с точностью до постоянной. Например, , и поэтому первообразной функции является функция . Учащиеся должны знать определение первообразной из учебника и что операция интегрирования – обратная операция дифференцирования.


4. Закрепление нового материала.

Разобрать № 326(а, б), 327(а, б), 330(а, б), 331(а, б).


5. Задание из ЕГЭ.

Задание A:

Укажите первообразную функции .

1) ; 2) ;

3) ; 4) .

Ответ: 1.


6. Итоги урока.

7. Домашнее задание.

Прочитать и разобрать §26.

Решить следующие задачи №330(в, г), 331(в, г).


Урок 6.

Определение первообразной.

Цели урока: знать правила дифференцирования, определение первообразной, понятие интегрирования. Уметь определить является ли функция F первообразной для функции f на указанном промежутке, находить простейшие первообразные.

Ход урока.

1. Организационный момент.

2. Устная работа.

  1. Сформулировать определение первообразной

  2. Решить устно №1 (стр. 205)


3. Решение задач.

Прочитать примеры с 1 – 3 (стр. 174-175) из учебника.

Разобрать №328, 333, 334.


4. Задание из ЕГЭ.

Задание 1A:

Укажите первообразную функции на промежутке .

1) ; 2) ;

3) ; 4) .

Ответ: 2.

Задание 2В:

Найдите максимум функции .

Решение:

Критические точки:

Определим знаки производной


x = -2 – точка максимума, т.к. производная в ней меняет знак с «плюса» на «минус».

Ответ: 1


5. Итоги урока.

6. Домашнее задание.

Прочитать и разобрать §26.

Решить следующие задачи №329, 332.


Урок 7.

Основное свойство первообразной.

Цели урока: знать определение первообразной, признак постоянства функции, общий вид первообразных, основное свойство первообразных. Уметь находить общий вид первообразных, первообразную, принимающую заданное значение в указанной точке.

Ход урока.

1. Организационный момент.

2. Устная работа.

  1. Найдите производную функции:

а) ; б) ;

в) ; г) ;

д) ; е) .

  1. Найдите одну из первообразных для функции на R.

а) ; б) ; в) ;

г) ; д) ; е) .

  1. Напомнить учащимися правило о производной о постоянной. Записать на доске два утверждения.

а) Если = С (const) на некотором промежутке I то на этом промежутке

б) Если на некотором промежутке I, то функция постоянна на этом промежутке.

Затем побеседовать с учащимися о связи между этими утверждениями.


3. Объяснение нового материала.

Вводится признак постоянства функции. Доказательство его на уроке не обязательно, можно дать домой для самостоятельного прочтения. Далее учитель доказывает теорему – основное свойство первообразных, поясняя геометрический смысл (рис. 118,а). Таблицу основных первообразных лучше иметь на плакате рядом с производными, чтобы учащиеся могли сопоставлять производные и первообразные, и не путали их. За неимением плаката (стр. 180) составить таблицу на доске и в тетрадях. Рассмотреть пример. Найти первообразную для функции . ; ; и т.д. Общий вид первообразных .


4. Закрепление нового материала.

Заполнить таблицу на доске и в тетрадях.

Проверка

10












Во втором и третьем столбике записывать не только ответ, но и решение по необходимости.

Разобрать задачи №335, 338(а, б), 340, при наличии времени №341.


5. Задание из ЕГЭ.

Задание A:

Укажите первообразную функции .

1) ; 2) ;

3) ; 4) .

Ответ: 3.


6. Итоги урока.

7. Домашнее задание.

Прочитать и разобрать §27.

Решить следующие задачи №336, 338(в, г).


Урок 8.

Основное свойство первообразной.

Цели урока: знать признак постоянства функции, основное свойство первообразных, геометрический смысл основного свойства первообразных. Уметь находить табличные первообразные, конкретную первообразную в указанной точке.

Ход урока.

1. Организационный момент.

2. Устная работа.

Повторить признак постоянства функции, основное свойство первообразных, геометрический смысл основного свойства первообразных, табличные первообразные (стр. 180).

Найти первообразные для следующей функции:

а) ; б) ; в) ;

г) ; д) ; е) .


3. Решение задач.

Разобрать пример 2 (стр. 179), №337(а, б), 339(а, б).


4. Задание из ЕГЭ.

Задание 1A:

Для функции укажите первообразную F, график которой проходит через точку .

1) ; 2) ;

3) ; 4) .

Ответ: 4.

Задание 2A:

Укажите первообразную F для функции , если .

1) ; 2) ;

3) ; 4) .

Ответ: 1.


5. Самостоятельная работа.

Ее можно проверить, сразу после выполнения и сдачи работы, с помощью кодоскопа.


Вариант I.

1) Найти первообразные для функций.

а) ; б) ;

в) ; г) .

2) Для функции найти первообразную, график которой проходит через точку .


Вариант II.

1) Найти первообразные для функций.

а) ; б) ;

в) ; г) .

2) Для функции найти первообразную, график которой проходит через точку .


6. Итоги урока.

7. Домашнее задание.

Прочитать и разобрать §27.

Решить следующие задачи №337(в, г), 339(в, г).


Урок 9.

Три правила нахождения первообразных.

Цели урока: знать определение первообразной, табличные первообразные, основное свойство первообразных, три правила нахождения первообразных. Уметь использовать правила нахождения первообразных, находить простейшие первообразные.

Ход урока.

1. Организационный момент.

2. Устная работа.

Повторить определение первообразной, основное свойство первообразных. Заполнить на доске следующим образом: один из учащихся пишет на доске, учитель проводит фронтальный опрос.

25



















3. Объяснение нового материала.

Преподаватель дает три правила нахождения первообразной, записывая формулы на доске согласно тексту учебника (стр. 181). После каждого записывать примеры, устно их поясняя.

1)

2)

3)

Говоря о правилах нахождения первообразных, следует подчеркнуть, что правила нахождения производной и первообразной для суммы функций и для произведения постоянной на функцию одинаковы.


4. Закрепление нового материала.

На конкретных примерах можно показать, что правило нахождения первообразной функции, представленной в виде суммы функций, верно для суммы не только двух слагаемых, но и трех и более. Например, можно выполнить упражнение.

Найти первообразные функции:

1) 2) ;

3) .

Затем проверить результат решения дифференцированием. Полезно, выполняя упражнение учебника, периодически проверять результат дифференцированием. При этом учащиеся не только проверяют изученный материал, но и глубже осознают связь между двумя операциями.

Решить задачи №342(в, г), 343(в, г), 344(в, г), 345(в, г).


5. Задание из ЕГЭ.

Задание A:

Укажите первообразную F функции , если известно, что .

1) ; 2) ;

3) ; 4) .

Ответ: 2.


6. Итоги урока.

7. Домашнее задание.

Прочитать и разобрать §28.

Решить следующие задачи №343(а, б), 344(а, б), 345(а, б).


Урок 10.

Три правила нахождения первообразных.

Цели урока: знать определение первообразной, табличные первообразные, правила нахождения первообразных, основное свойство первообразных, табличные первообразные. Уметь находить общий вид первообразных и первообразную, принимающую заданное значение в указанной точке.

Ход урока.

1. Организационный момент.

2. Устная работа.

Повторить определение первообразной, правила нахождения первообразных, основное свойство первообразной.

Найти общий вид первообразных:

а)

б)

в)

г)


3. Решение задач.

Разобрать №346(в, г), 347(в, г).

Решить следующее упражнение.

Найти общий вид первообразных для функций:


Функция

Ответ

1)

2)

3)

4)

5)


4. Самостоятельная работа.

Лучше писать ее с использованием и проверить сразу на уроке, после сдачи работ.


Вариант I.

Найти общий вид первообразных.

Функция

Ответ

1)

2)

3)

4)

5)


Вариант II.

Найти общий вид первообразных.

Функция

Ответ

1)

2)

3)

4)

5)


5. Задание из ЕГЭ.

Задание 1В:

Найдите наименьшее положительное значение аргумента, при котором график функции проходит через точку лежащую на оси абсцисс.

Ответ:.

Задание 2В:

Найдите наибольшее отрицательное значение аргумента, при котором график функции проходит через точку оси OX.

Ответ:.


6. Итоги урока.

7. Домашнее задание.

Прочитать и разобрать §28.

Решить следующие задачи №346(а, б), 347(а, б).


Урок 11.

Три правила нахождения первообразных.

Цели урока: знать определение первообразной, основное свойство первообразных, правила нахождения первообразных. Уметь находить общий вид первообразных и первообразную, принимающую заданное значение в указанной точке.

Ход урока.

1. Организационный момент.

2. Проверка домашнего задания.

Можно просто устно проверить ответы.


3. Проверка усвоения изученного материала.

1) Продолжить фразу

  • первообразная – это …

  • первообразная суммы …

  • постоянный множитель …

  • основное свойство первообразной …

  • геометрический смысл первообразной …

  1. Найдите первообразные функций.


4. Индивидуальный опрос и фронтальная работа с классом.

К доске вызывается три ученика для выполнения двух упражнений.

1)

а)

б)

2)

а)

б)

3)

а)

б)

С остальными учащимися фронтально производится опрос о формулах с понижением степени тригонометрических функций.


5. Решение задач.

Объяснение способа решения упражнения с опорой на знания учащихся (по образцу).

Дано: . Найти F(x).

Решение:

1) или

2)

Ответ:

Решить №348б 350б 352(а, б).


6. Обучающая самостоятельная работа.

Два ученика вызываются к доске и решают упражнения на ее закрытых полях по вариантам. Остальные учащиеся решают в тетрадях, затем проверяют по решениям на доске.

Вариант 1

Вариант 2

1. Найти F(x) для функций.

2. Для функции найти первообразную, график которой проходит через точку

2. Для функции найти первообразную, график которой проходит через точку



7. Задание из ЕГЭ.

Задание 1В:

Укажите количество промежутков убывания функции , заданной на отрезке

Ответ: 2

Задание 2В:

Укажите количество промежутков возрастания функции , заданной на отрезке

Ответ: 2


8. Итоги урока.

9. Домашнее задание.

Прочитать и разобрать §28.

Решить следующие задачи №349, 352(в, г).



Здесь представлен документ «Конспект урока по Алгебре "Определение первообразной"», который Вы можете бесплатно скачать на нашем сайте. Предмет: Алгебра (все классы). Также здесь Вы можете найти дополнительные учебные материалы и презентации по данной теме, используя которые, Вы сможете еще больше заинтересовать аудиторию и преподнести еще больше полезной информации.

Список похожих документов

Конспект и презентация урока по алгебре в 11 классе "Введение понятия первообразной"

Конспект и презентация урока по алгебре в 11 классе "Введение понятия первообразной"

. Муниципальное общеобразовательное учреждение. «Средняя общеобразовательная школа №7. г. Соль-Илецка Оренбургской области». ...
Конспект урока по Алгебре "Арифметическая и геометрическая прогрессии"

Конспект урока по Алгебре "Арифметическая и геометрическая прогрессии"

Тема: Арифметическая и геометрическая прогрессии. Тип урока:. урок обобщения и систематизации знаний. Цель:. актуализация имеющиеся знания ...
Конспект урока по Алгебре "Арифметическая прогрессия. Формула п-ой арифметической прогрессии" 9 класс

Конспект урока по Алгебре "Арифметическая прогрессия. Формула п-ой арифметической прогрессии" 9 класс

Открытый урок. Дата: 27.11. Класс: 9. Предмет: алгебра. Тема урока: Решение задач на тему «Арифметическая прогрессия. Формула п-ой арифметической ...
Конспект урока по алгебре "АРИФМЕТИЧЕСКАЯ И ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИИ" 9 класс

Конспект урока по алгебре "АРИФМЕТИЧЕСКАЯ И ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИИ" 9 класс

Муниципальное бюджетное общеобразовательное учреждение. Наро-Фоминская средняя общеобразовательная школа №5. с углубленным изучением отдельных ...
Конспект урока по Алгебре "Арифметические действия с числами" 6 класс

Конспект урока по Алгебре "Арифметические действия с числами" 6 класс

Методическая разработка урокаматематики. «Арифметические действия с. числами. ». для учащихся 6-го класса. Аннотация. Повторение изученного ...
Конспект урока по Алгебре "Арифметическая прогрессия" 9 класс

Конспект урока по Алгебре "Арифметическая прогрессия" 9 класс

Солдатова Татьяна Анатольевна. . МОУ «СОШ с. Сулак. . Краснопартизанского района. Саратовской области». . Учитель математики. тема: "Арифметическая ...
Конспект урока по Алгебре "Арифметический квадратный корень и его свойства" 8 класс

Конспект урока по Алгебре "Арифметический квадратный корень и его свойства" 8 класс

Тема: «Арифметический квадратный корень и его свойства». Урок-игра «Аукцион математических знаний». Цели урока. :. . Образовательные:. - ...
Конспект урока по Алгебре "Арифметический квадратный корень и его свойства" 10 класс

Конспект урока по Алгебре "Арифметический квадратный корень и его свойства" 10 класс

Конспект урока математики в 10 классе. Жирнова С.В. учитель математики. Тема урока:. «Арифметический квадратный корень и его свойства». Тип урока. ...
Конспект урока по Алгебре "Арифметический квадратный корень" 8 класс

Конспект урока по Алгебре "Арифметический квадратный корень" 8 класс

Урок алгебры в 8 классе. «Арифметический квадратный корень». Большакова И.А., учитель математики. СШГ №16 г. Талдыкорган. Цели урока:. образовательные:. ...
Конспект урока по Алгебре "Арифметический квадратный корень"

Конспект урока по Алгебре "Арифметический квадратный корень"

Тема урока: Урок- практикум по теме «Арифметический квадратный корень». Цели урока:. . -. знать определения арифметического квадратного корня, ...
Конспект урока по Алгебре "Биквадратное уравнение и его корни" 8 класс

Конспект урока по Алгебре "Биквадратное уравнение и его корни" 8 класс

Учитель математики Апенькина Наталья Александровна. Конспект урока. Класс – 8. Тема – «Биквадратное уравнение и его корни». Цели урока: . образовательная:. ...
Конспект урока по Алгебре "Биквадратные уравнения" 8 класс

Конспект урока по Алгебре "Биквадратные уравнения" 8 класс

Иванова Ольга Александровна. МОУ «СОШ №2» г. Всеволожска. Учитель математики. Урок по теме: «Биквадратные уравнения». Цели урока:. . Обучающие:. ...
Конспект урока по Алгебре "В мир одночленов и многочленов" 7 класс

Конспект урока по Алгебре "В мир одночленов и многочленов" 7 класс

Алгебра 7 класс. Урок – путешествие «В мир одночленов и многочленов». Цели:. обеспечить повторение и систематизацию материала темы; создать ...
Конспект урока по Алгебре "Алгебраические дроби" 8 класс

Конспект урока по Алгебре "Алгебраические дроби" 8 класс

Муниципальное бюджетное общеобразовательное учреждение Средняя общеобразовательная школа села Старобурново. . муниципального района Бирский район ...
Конспект урока в 10 классе по алгебре "Соотношения между тригонометрическими функциями одного и того же аргумента"

Конспект урока в 10 классе по алгебре "Соотношения между тригонометрическими функциями одного и того же аргумента"

. Урок по алгебре в 10-м классе "Соотношения между тригонометрическими функциями одного и того же аргумента". . Бойко Ксения Николаевна. МАОУ ...
Конспект урока по Алгебре "Весёлый математический час" 5 класс

Конспект урока по Алгебре "Весёлый математический час" 5 класс

«Весёлый математический час». 5б класс. Учитель: Демишева Лидия Васильевна. МОУ СОШ №13. Цели. : 1)Развитие хорошей памяти, логического мышления, ...
Конспект интегрированного урока по алгебре по теме "Приближенные вычисления" 8 класс

Конспект интегрированного урока по алгебре по теме "Приближенные вычисления" 8 класс

Голицинский филиал МБОУ «Никифоровская СОШ№2». Никифоровского района Тамбовской области. Конспект интегрированного урока по алгебре ...
Конспект урока в 7 классе по алгебре по теме: «Решение задач составлением системы уравнений»

Конспект урока в 7 классе по алгебре по теме: «Решение задач составлением системы уравнений»

Муниципальное общеобразовательное учреждение общеобразовательная школа №53. пос. Октябрьский Люберецкий район Московская область. . . ...
Конспект урока в 9 классе по алгебре "НАХОЖДЕНИЕ СВОЙСТВ ФУНКЦИИ ПО ЕЕ ГРАФИКУ"

Конспект урока в 9 классе по алгебре "НАХОЖДЕНИЕ СВОЙСТВ ФУНКЦИИ ПО ЕЕ ГРАФИКУ"

Алгебра 9 класс. Тема урока: Нахождение свойств функции по ее графику. Цели:. познакомить учащихся с основными свойствами функций; формировать ...
Конспект урока алгебры по теме: Определение арифметической прогрессии. Формула n-го члена арифметической прогрессии, 9 класс

Конспект урока алгебры по теме: Определение арифметической прогрессии. Формула n-го члена арифметической прогрессии, 9 класс

ПЛАН-КОНСПЕКТ УРОКА Тема урока: «Определение арифметической прогрессии. Формула n. -го члена арифметической прогрессии». . ФИО (полностью). ...

Информация о документе

Ваша оценка: Оцените документ по шкале от 1 до 5 баллов
Дата добавления:13 июля 2016
Категория:Алгебра
Классы:
Тип документа: Конспекты уроков
Поделись с друзьями:
Скачать напрямую