- Урок разноуровневого обобщающего повторения по теме «Производная.Геометрический и физический смысл производной» 11 класс

Урок разноуровневого обобщающего повторения по теме «Производная.Геометрический и физический смысл производной» 11 класс

Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа № 17 село Краснопартизанское






Урок разноуровневого обобщающего повторения

по теме «Производная.Геометрический и физический смысл производной»

по алгебре

для учащихся 11 класса




























Автор разработки Титенко Ольга Григорьевна


С.Краснопартизанское


2012 год


Цели урока: - обобщить теоретические знания по теме производная, геометрический и физический смысл производной

- закрепить умение находить производные функций,

- решать задачи на геометрический и физический смысл производной,

- готовиться к ЕГЭ: повторить умение решать задачи на вычисления и преобразования тригонометрических, логарифмических, иррациональных и степенных выражений.

Оборудование: карточки трех цветов, компьютер.


Ход урока.

  1. 1 этап – Организационный ( 1 мин).

Учитель сообщает тему урока, цель и поясняет, что во время урока будет использоваться раздаточный материал, который лежит на партах и проведена разноуровневая самостоятельная работа.

  1. 2 этап- Повторение теоретического материала по теме производная. ( 10 мин).

Учитель приглашает к доске ученика написать таблицу производных элементарных функций.

Функция y=f (x)

Производная y′= f′(x)

C

0

xЄR

x-1

ax

ax lnx

ex

ex

log x

lnx

sinx

cosx

cosx

- sinx

tg x

ctgx

-

( Все теоретические и практические вопросы урока демонстрируются на экране).

Учитель: Сформулируйте определение производной функции в точке.

Ученик: Производной функции f в точке x0 называется число, к которому стремится разностное отношение при

Учитель: Сформулируйте и запишите правила вычисления производных.

Ученики. 1. Если функция y=f(x) y=g(x) имеют производную в точке x, то и их сумма имеет производную в точке x ,причем производная суммы равна сумме производных.

(f(x)+g(x))′= f′(x)+g′(x)

2. Если функция y=f(x) имеет производную в точке x, то и функция y=k f(x) имеет производную в точке x, причем (k (f(x))′=k f′(x)

Постоянный множитель можно выносить за знак производной.

3.Если функция y=f(x) и y=g(x) имеют производную в точке x, то и их произведение имеет производную в точке x

( f(x) g(x))′= f′(x) g(x)+f(x)g′(x)

Производная произведения двух функций равна сумме двух слагаемых; первое слагаемое есть произведение производной первой функции на вторую функцию, а второе слагаемое есть произведение первой функции на производную второй функции.

4. Если функция y=f(x) и y= g(x) имеют производную в точке x и в этой точкеg(x)≠0 , то и частное имеет производную в точке x , причем

Учитель. Что называется касательной к графику функции?

Ученик. Касательной к графику дифференцируемой в точке x0 функции f- называется прямая, проходящая через точку (x0 ;f(x0) ) и имеющая угловой коэффициент f′(x0).

Учитель: В чем состоит геометрический смысл производной?

Ученик. Геометрический смысл производной состоит в том, что значение производной функции в точке равно угловому коэффициенту касательной к графику функции в этой точке.

Учитель. Назовите уравнение касательной к графику функции y=f(x) в точке с абсциссой x0.

Ученик.y= f(x0)+ f′(x0) ( x-x0)

Учитель. В чем состоит физический смысл производной?

Ученик. Если материальная точка движется прямолинейно по закону S(t) , то производная функции y= S(t)выражает мгновенную скорость материальной точки в момент времени t0 , т.е. v= S′(t).Производная от координаты по времени есть скорость .Производная от скорости по времени есть ускорение.

Учитель. Решим у доски несколько задач на применение этих правил.

Задача№1. Найти угловой коэффициент касательной, проведенной к графику функции f(x)= 2-x2+3x4 в его точке с абсциссой x0=-1.

Задача №2. Через точку графика функции y(x)= -0,5x2+4x+7 с абсциссой x0=2 проведена касательная . Найдите тангенс угла наклона этой касательной к оси абсцисс.

Задача № 3. Составьте уравнение касательной к графику функции y= x2-2x в точке x0=-1/

Задача №4. При движении тела по прямой расстояние S( в метрах) от начальной точки изменяется по закону S(t)=t3-t2+5t+1( t- время движения в секундах). Найти скорость в (м/с) тела через 3 секунды после начала движения.( Вопросы устного счета на экране).

3 этап – Устный счет ( на экране ) – 5 минут.

Найти производные функции.

5-4x 2ex 2x

x4

x8

x6

2x3

2x5-3x2+2

7x6+3x3+5x2

2x-4

( 3x-6)2

(8+7x)2

log2x sin 2x cos(3x+4)

ln x sin2x sin ( 3-2x)

cos 2x cos 3x


4 этап урока- Разноуровневая самостоятельная работа.( 20 минут).

Дети получают карточки трех цветов, трех уровней: желтые – содержат задание базового уровня сложности, голубые – повышенного уровня сложности, розовые- высокого уровня сложности. Они так же содержат задания на вычисления и преобразования логарифмических, тригонометрических, иррациональных и степенных выражений. На самостоятельную работу отводится 20 минут. Дети выполняют работу в тетрадях для самостоятельных работ. Учитель вызывает к доске одного или двух учеников работающих с голубыми карточками, а во время работы оказывает помощь ученикам , работающим по желтым карточкам. После окончания работы ученики, работающие у доски, объясняют решение своих задач, а остальные внимательно слушают и задают вопросы по решению или поправляют, если есть ошибки.

Примерные варианты разноуровневых карточек.


Желтая карточка № 1.


1. Найти значение выражения. 3-4,5 а 3 2,5 а при а= -

1) 2) 3 3) 1 4)

2. Вычислить log 515+ log 5

1) 5 2) 1 3) 4) -1

3. Найти значение производной функции y = x4 – 2x3 -x2-5 в точке с абсциссой x 0 = 1

1) -3 2) 2 3) 0 4)1

4. Найдите производную функции y = e3x+x2

1) y ′(x)= e3x+2x 3) y′(x)= 3e3x+2x

2) y ′(x)= 3 ex+2x 4) y ′(x)= 3e2x +2x

5. Материальная точка движется по закону x(t) = t3-4t2+3t-17 (x –перемещение в м,t-время в с ). Через сколько секунд после начала движения ускорение точки будет равно 10м ∕ с2.

1) 6 2) 2 3) 3 4) 4

6. Определите абсциссу точки, в которой касательная к графику функции y= 4x2 – 8x +4 параллельна оси абсцисс.

1) -8 2) 1 3) 0 4) 4



Желтая карточка № 2

1. Упростить 2,2а 1,5

1) 7.2 a 2,5 2) 11 а 2,5 3) 7,2 а 1,5 4) 11 а1,5


2. Вычислить 12 – log3 16log 16 3

1) 0 2) -4 3) 12 4) 11

3. Найдите значение производной функции y(x) = ln ( x-3) в точке с абсциссой x0=4

1) -1 2) -3 3) 1 4) 3

4. Найдите угловой коэффициент касательной, проведенной к графику функции

y= 3x3-2x2 +5 в его точке с абсциссой x0 = -3

1) 98 2) 69 3) 33 4) 93

5. Тело движется по прямой так, что расстояние S ( в м) от него до точки М этой прямой изменяется по закону S ( t ) = t4-t3 + 3t2 -21. Чему будет равна мгновенная скорость ( (м/с) через 3 секунды после начала движения?

1) 70 2) 78 3) 81 4) 76

6. Найдите производную функции y ( x) = sin 4xx4

1) y′ ( x) = 4 cos 3x – 4x3 3) y′ (x) = -4 sin 4x – 4x3

2) y′ ( x) = 4 sin 4x – 3x3 4) y′(x) = 4 cos 4x – 4x3



________________________________________________________________


Желтая карточка 3.


  1. Вычислить 3 - 20

1) 250 2) 70 3) 10 4) 430

2. Найдите значение выражения log 6 ( 36 m2), если log6m= 3.

1) 8 2) 18 3) 12 4) 24

3. Найти производную функции y= 3x4-2x2+x-1 в точке с абсциссой x0 = 1

1) 9 2) 5 3) 4 4) 6

4. Найдите угловой коэффициент касательной, проведенной к графику функции

y = -2x4+3x +5 в его точке с абсциссой x0=-2

1) 67 2) -61 3) 19 4) 72

5. Материальная точка движется по закону x(t) = t3-5t2+6t+7 ( x – перемещение в м, t- время в с). Через сколько секунд после начала движения ускорение точки будет равно 8м/ с2

1) 1 2) 2 3) 3 4) 4

6. Найти производную функции y= 2x+sinx

1) y(x)= 2xln2 +cos x 3) y= x 2 x-1 +cosx

2)y(x) = + cosx 4)y= 2x ln2 –cosx



Голубая карточка №1


  1. Вычислить ( -

  2. Вычислить ( , если tg =

  3. Найдите значение производной функции y= sin ( 4x - ) в точке x0=

  4. Найдите угол наклона касательной, проведенной к графику функции f(x) = tgx+ в точке с абсциссой x0=

  5. Составьте уравнение касательной к графику функции y = 2+x, параллельной прямой y= 2x

  6. Найти значение производной функции f (x)= в точке x0= -1



Голубая карточка 2.

  1. Вычислить

  2. Найти значение выражения , если cos= Є

  3. Найдите значение производной функции y= в точке x0=2

  4. Составьте уравнение касательной к графику функции y=2x- ln x, параллельной прямой y=x

  5. Найти угловой коэффициент касательной к графику функции g(x)=, проведенной в точке с абсциссой x0=-0,5

  6. Закон движения тела задан формулой S(t)=0,5t2 +3t +2( s-в метрах, t- время в с). Какой путь пройден телом за 4с? Какова скорость движения в этот момент времени?



Голубая карточка 3.



  1. Вычислить log 36-2log 9+1

  2. Вычислить (110)2 +

  3. Найдите значение производной функции y=e2x-1 в точке x0=

  4. Составьте уравнение касательной к графику функции y= в точке графика с ординатой 2.

  5. Материальная точка движется по закону x(t)= (x –перемещение, t-время в с). Через сколько секунд после начала движения ускорение точки будет равно 4 м/с2

  6. Найдите значение производной функции f(x)=2 в точке x0=4



Розовая карточка.( повышенный уровень)

  1. Найти производную функции

а) y= sin 32x

в) y=( x4-x2+1)5

2. К графику функции y= проведены две касательные , одна из которых проходит через точку графика с абсциссой x0=-1 .Найдите абсциссу точки, в которой другая касательная касается графика данной функции.

3.При каких значениях параметра b прямая y=bx является касательной к параболе f(x)=x2-2x+4 ?

4. Решить уравнение x

5 этап – Подведение итога урока.( 4 минуты)

Учитель подводит итог урока, называет наиболее активных учеников, выставляет оценки. В качестве домашнего задания дети обмениваются карточками в своей группе




Список использованной литературы:

1. Семенко Е.А. Обобщение,повторение курса алгебры и начала анализа .

Ч. 3.-Краснодар :2006

2.Колмогоров А.Н. Алгебра и начала анализа .10-11 класс.- М.:«Просвещение»,2010

3 .Дорофеев Г.В.Математика. Сборник заданий для проведения письменного экзамена за курс средней школы.- «Дрофа», 2002 год

  1. Семенко Е.А. Тестовые контрольные задания по алгебре и началам анализа .- «Просвещение -Юг»,2005 год












Здесь представлен документ «Урок разноуровневого обобщающего повторения по теме «Производная.Геометрический и физический смысл производной» 11 класс», который Вы можете бесплатно скачать на нашем сайте. Предмет: Алгебра (11 класс). Также здесь Вы можете найти дополнительные учебные материалы и презентации по данной теме, используя которые, Вы сможете еще больше заинтересовать аудиторию и преподнести еще больше полезной информации.

Список похожих документов

Конспект урока для 9 класса по теме "Решение систем уравнений"

Конспект урока для 9 класса по теме "Решение систем уравнений"

Автор: Пунгер Ирина Евгеньевна, Криулина Наталия Николаевна. Место работы: Архангельская область, г. Северодвинск, МБОУ «СОШ №23». Должность: ...
Конспект урока математики в 7 классе по теме "Разложение многочлена на множители способом группировки"

Конспект урока математики в 7 классе по теме "Разложение многочлена на множители способом группировки"

Муниципальное бюджетное общеобразовательное учреждение. «Новомихайловская средняя общеобразовательная школа». Татарского района Новосибирской области. ...
Конспект и презентация урока алгебры в 8 классе по теме "Решение квадратных уравнений"

Конспект и презентация урока алгебры в 8 классе по теме "Решение квадратных уравнений"

КГУ «Первомайский комплекс «Общеобразовательная средняя школа-детский сад имени Д. М. Карбышева» отдела образования Шемонаихинского района». ...
Конспект компетентностно-ориентированного урока по теме: «Решение систем двух уравнений с двумя неизвестными способом подстановки» 7 класс

Конспект компетентностно-ориентированного урока по теме: «Решение систем двух уравнений с двумя неизвестными способом подстановки» 7 класс

Бюджетное общеобразовательное учреждение. «Средняя общеобразовательная школа № 108». г. Омска. КОНСПЕКТ. . КОМПЕТЕНТНОСТНО-ОРИЕНТИРОВАННОГО ...
Конспект интегрированного урока по алгебре по теме "Приближенные вычисления" 8 класс

Конспект интегрированного урока по алгебре по теме "Приближенные вычисления" 8 класс

Голицинский филиал МБОУ «Никифоровская СОШ№2». Никифоровского района Тамбовской области. Конспект интегрированного урока по алгебре ...
Конспект урока алгебры в 10 классе по теме "Метод интервалов"

Конспект урока алгебры в 10 классе по теме "Метод интервалов"

Конспект урока алгебры в 10-м классе. Сизых Галины Дмитриевны. учителя математики МБОУ. «Качульская средняя. . общеобразовательная школа». ...
Конспект обобщающего урока по алгебре "Формулы сокращённого умножения" 7 класс

Конспект обобщающего урока по алгебре "Формулы сокращённого умножения" 7 класс

Конспект. обобщающего урока по алгебре. . с использованием информационных технологий (ИТ). Тема:. « Формулы сокращённого умножения». Продолжительность: ...
Конспект урока алгебры в 7-м классе по теме "Умножение одночлена на многочлен"

Конспект урока алгебры в 7-м классе по теме "Умножение одночлена на многочлен"

12. . Конспект урока алгебры с презентацией в 7-м классе по теме. . "Умножение одночлена на многочлен". Автор: Макарова Татьяна Павловна, ...
Конспект урока алгебры в 7 классе по теме "Умножение одночлена на многочлен"

Конспект урока алгебры в 7 классе по теме "Умножение одночлена на многочлен"

12. . Конспект урока алгебры в 7 классе по теме. . "Умножение одночлена на многочлен". Автор: Макарова Татьяна Павловна, учитель математики ...
Конспект урока алгебры для 11 класса «Исследование функции с помощью производной»

Конспект урока алгебры для 11 класса «Исследование функции с помощью производной»

Выездное заседание республиканского клуба «Пеликан». 20 марта 2012 г. План-конспект урока. Тема «Исследование функции с помощью производной». ...
Конспект урока алгебры в 8 классе по теме "Квадратные уравнения"

Конспект урока алгебры в 8 классе по теме "Квадратные уравнения"

Шамарина Вера Валентиновна,. МБОУ «Цнинская СОШ № 1» п. Строитель Тамбовского района Тамбовской области,. учитель математики. ...
Конспект урока алгебры по теме: Определение арифметической прогрессии. Формула n-го члена арифметической прогрессии, 9 класс

Конспект урока алгебры по теме: Определение арифметической прогрессии. Формула n-го члена арифметической прогрессии, 9 класс

ПЛАН-КОНСПЕКТ УРОКА Тема урока: «Определение арифметической прогрессии. Формула n. -го члена арифметической прогрессии». . ФИО (полностью). ...
Конспект урока алгебры для 7 класса по теме «Возведение в квадрат и в куб суммы и разности двух выражений»

Конспект урока алгебры для 7 класса по теме «Возведение в квадрат и в куб суммы и разности двух выражений»

Конспект урока алгебры по теме:. «Возведение в квадрат и в куб суммы и разности двух выражений». 7класс. Учитель математики. Гнутова ...
Конспект урока для 10 класса по теме "Решение показательных уравнений"

Конспект урока для 10 класса по теме "Решение показательных уравнений"

Урок по теме: «Решение показательных уравнений» для 10-11 классов. Разработала: преподаватель математики Бикирова Наиля Абдрашитовна. . ГБОУ СПО ...
Конспект урока для 5 класса по теме "Уравнения и решения задач с помощью уравнения"

Конспект урока для 5 класса по теме "Уравнения и решения задач с помощью уравнения"

Тема: «Уравнения и решение задач с помощью уравнений». 5 класс. Цель:. . закрепить умения и навыки решения уравнений и задач с помощью уравнений. ...
Конспект урока для 5 класса по теме «Упрощение выражений»

Конспект урока для 5 класса по теме «Упрощение выражений»

Конспект урока для 5 класса по теме «Упрощение выражений». . . . Оборудование. :. . Корзиночки (изготовленные из картона);. ...
Конспект урока для 8 класса по теме «Функции»

Конспект урока для 8 класса по теме «Функции»

Конспект урока по теме «Функции». 8 класс. Цель: Повторить виды изученных функций и их свойства. Закрепить умения читать график функции. Урок проводится ...
Конспект урока для 7 класса по теме «Формула разности квадратов»

Конспект урока для 7 класса по теме «Формула разности квадратов»

Государственное бюджетное общеобразовательное учреждение средняя общеобразовательная школа № 252 Красносельского района. . Санкт-Петербурга. ...
Конспект урока математики "Формулы сокращенного умножения" 7 класс

Конспект урока математики "Формулы сокращенного умножения" 7 класс

МБОУ «Матюшинская СОШ». Верхнеуслонского района Республики Татарстан. Урок математики в 7классе. Тема урока « Формулы сокращенного ...
конспект к уроку "Арифметический квадратный корень" 8 класс

конспект к уроку "Арифметический квадратный корень" 8 класс

Негосударственное образовательное учреждение. «Средняя общеобразовательная школа с углубленным изучением. отдельных предметов имени В.Д.Чурсина ...